The Fort Worth Press - Réacteur lunaire, l'Alarme

USD -
AED 3.6725
AFN 66.000063
ALL 82.019444
AMD 379.030024
ANG 1.79008
AOA 917.000222
ARS 1452.1415
AUD 1.436864
AWG 1.8
AZN 1.699581
BAM 1.650151
BBD 2.016242
BDT 122.43245
BGN 1.67937
BHD 0.377035
BIF 2964.5
BMD 1
BND 1.271584
BOB 6.942435
BRL 5.261799
BSD 1.001076
BTN 91.544186
BWP 13.176113
BYN 2.86646
BYR 19600
BZD 2.013297
CAD 1.36714
CDF 2154.999935
CHF 0.778795
CLF 0.021919
CLP 865.500352
CNY 6.946501
CNH 6.938895
COP 3622.05
CRC 496.70313
CUC 1
CUP 26.5
CVE 93.874975
CZK 20.59725
DJF 177.719709
DKK 6.327105
DOP 62.950149
DZD 129.934449
EGP 47.089896
ERN 15
ETB 155.250273
EUR 0.84721
FJD 2.206598
FKP 0.729754
GBP 0.731315
GEL 2.694994
GGP 0.729754
GHS 10.954985
GIP 0.729754
GMD 73.55548
GNF 8751.000245
GTQ 7.681242
GYD 209.445862
HKD 7.810703
HNL 26.449908
HRK 6.386897
HTG 131.200378
HUF 322.735497
IDR 16766.2
ILS 3.10084
IMP 0.729754
INR 90.46795
IQD 1310.5
IRR 42125.000158
ISK 123.039932
JEP 0.729754
JMD 157.178897
JOD 0.709014
JPY 155.4575
KES 129.13006
KGS 87.449831
KHR 4025.492445
KMF 418.000086
KPW 900
KRW 1450.029709
KWD 0.30714
KYD 0.834223
KZT 505.528533
LAK 21494.999879
LBP 85549.999924
LKR 310.004134
LRD 185.999884
LSL 16.110186
LTL 2.95274
LVL 0.60489
LYD 6.320108
MAD 9.15875
MDL 16.948552
MGA 4450.000276
MKD 52.248327
MMK 2099.986463
MNT 3564.625242
MOP 8.053239
MRU 39.929374
MUR 45.650252
MVR 15.450036
MWK 1737.000377
MXN 17.388398
MYR 3.958498
MZN 63.749877
NAD 16.109867
NGN 1391.000271
NIO 36.697378
NOK 9.69397
NPR 146.471315
NZD 1.662775
OMR 0.38451
PAB 1.00108
PEN 3.365975
PGK 4.237972
PHP 58.919935
PKR 279.749793
PLN 3.57693
PYG 6656.120146
QAR 3.64125
RON 4.317897
RSD 99.493038
RUB 76.448038
RWF 1453
SAR 3.750185
SBD 8.058101
SCR 14.250149
SDG 601.501494
SEK 8.95644
SGD 1.271315
SHP 0.750259
SLE 24.474994
SLL 20969.499267
SOS 571.503458
SRD 38.025022
STD 20697.981008
STN 21.25
SVC 8.759629
SYP 11059.574895
SZL 16.109942
THB 31.490262
TJS 9.349825
TMT 3.51
TND 2.847497
TOP 2.40776
TRY 43.480099
TTD 6.777673
TWD 31.591702
TZS 2588.490529
UAH 43.112529
UGX 3575.692379
UYU 38.836508
UZS 12249.999719
VES 369.791581
VND 26020
VUV 119.156711
WST 2.710781
XAF 553.468475
XAG 0.012114
XAU 0.000209
XCD 2.70255
XCG 1.80413
XDR 0.687215
XOF 551.505966
XPF 101.749394
YER 238.374969
ZAR 16.066915
ZMK 9001.197925
ZMW 19.646044
ZWL 321.999592
  • AEX

    7.8100

    1009.51

    +0.78%

  • BEL20

    73.7800

    5459.32

    +1.37%

  • PX1

    54.4500

    8181.17

    +0.67%

  • ISEQ

    231.4000

    13379.13

    +1.76%

  • OSEBX

    -3.1700

    1757.17

    -0.18%

  • PSI20

    44.1800

    8706.09

    +0.51%

  • ENTEC

    -5.8300

    1416.23

    -0.41%

  • BIOTK

    43.1000

    4071.19

    +1.07%

  • N150

    17.2900

    3947.76

    +0.44%


Réacteur lunaire, l'Alarme




La NASA veut franchir un cap décisif pour l’exploration habitée : installer un réacteur nucléaire sur la Lune afin d’alimenter en continu une base et ses systèmes vitaux, là où les nuits durent quatorze jours terrestres et où l’ombre permanente rend l’énergie solaire aléatoire. Derrière cette promesse d’autonomie énergétique se cache un projet industriel d’une ampleur inédite dans l’espace — et un débat public sensible sur la sûreté, l’environnement et la gouvernance.

Concrètement, l’agence américaine prépare un système de fission de surface capable de fonctionner sans interruption pendant près d’une décennie. Après une première phase de concept menée dès 2022, elle a récemment renforcé son ambition : viser au moins 100 kW électriques, avec une conversion par cycle Brayton fermé (un compresseur et une turbine qui transforment la chaleur du cœur en électricité) et une contrainte de masse stricte pour l’acheminement lunaire. Le calendrier avancé : une démonstration au début-milieu des années 2030, suivie d’une exploitation multiannuelle si les essais sont concluants.

Pourquoi un réacteur ? Parce que la Lune impose des contraintes énergétiques radicales. Un module nucléaire compacte fournirait une puissance stable pour les systèmes de vie, les communications, la recherche et des usages très gourmands comme l’extraction d’eau dans les régions polaires (glaces d’ombre éternelle) et la production d’oxygène et de carburants in situ. En réduisant la dépendance aux panneaux solaires et aux batteries massives, il sécurise les missions pendant les longues nuits et dans les cratères sans soleil.

Sur le plan industriel, la première sélection américaine a associé des géants de l’aérospatial et du nucléaire à des spécialistes des turbomachines : Lockheed Martin avec BWX Technologies et Creare, Westinghouse avec Aerojet Rocketdyne, ainsi qu’IX (co-entreprise d’Intuitive Machines et X-energy) avec Maxar et Boeing. Parallèlement, des contrats ciblés soutiennent les convertisseurs Brayton (turbomachines et alternateurs) — technologies clés pour gagner en rendement et compacité. Cette stratégie modulaire vise à faire converger troisième décennie d’essais nucléaires spatiaux américains et expertise des filières civiles.

Côté cœur, la filière privilégiée s’appuie sur de l’uranium faiblement enrichi à haut titre (HALEU, < 20 % U-235). Ce compromis, déjà exploré pour des micro-réacteurs terrestres, permet des réacteurs plus petits et plus endurants tout en limitant les risques de prolifération associés à l’uranium hautement enrichi. Les documents techniques récents évoquent des architectures de 40 kWe sur dix ans comme jalon, et l’effort en 2025 pousse vers l’échelle 100 kWe pour répondre aux besoins d’une base habitée.

Reste la question qui inquiète : la sûreté. L’espace a déjà connu des controverses autour de sources nucléaires — des RTG (générateurs thermoélectriques au plutonium) aux débats lors du lancement de Cassini dans les années 1990. La Lune n’abrite pas de biosphère à protéger, mais le risque maximal se situe au lancement et pendant l’injection orbitale, sur ou au-dessus de la Terre. C’est pourquoi le programme devra démontrer une résistance aux accidents de lancement, une confinement robuste du combustible en cas de défaillance, des procédures de retour sécurisé, et un plan de fin de vie (mise en sécurité ou stockage sur place). À l’échelle internationale, un cadre de sûreté et de transparence existe : les principes onusiens et le Safety Framework (ONU/IAEA) imposent des évaluations de sûreté pré-lancement rendues publiques et des pratiques d’ingénierie prudentes. Le projet américain devra s’y conformer et convaincre les partenaires de l’ère Artemis.

La gouvernance soulève aussi des questions : où implanter un réacteur pour minimiser les risques radiologiques pour les équipages ? Quelles zones d’exclusion établir autour du site ? Comment partager l’énergie avec des partenaires internationaux tout en respectant les Accords Artemis et le droit spatial existant ? La transparence des données de sûreté et l’implication d’instances indépendantes seront déterminantes pour l’acceptabilité sociale.

Sur la scène géopolitique, la course technologique s’accélère. Des ingénieurs chinois revendiquent des concepts alternatifs au design occidental, ciblant des gains d’efficacité et des réacteurs plus légers pour des déploiements multiples. Qu’il s’agisse d’émulation ou de compétition, l’effet est clair : la poussée vers le nucléaire lunaire devient un axe majeur de leadership spatial et d’autonomie énergétique hors-Terre.

Enfin, il y a l’équation économique. Entre la qualification nucléaire (tests, redondances, blindages), le transport vers la surface et l’intégration aux habitats, l’addition sera élevée. Les défenseurs du projet rétorquent que l’énergie fiable est la condition sine qua non d’une présence durable — et que les coûts seront mutualisés par des décennies d’usages (habitats, mobilité, ISRU, robotique), voire par des retombées terrestres (micro-réacteurs, turbomachines Brayton, matériaux résistants).

En bref : le réacteur lunaire n’est plus une idée, c’est un programme. Il promet de rendre une base lunaire viable 24/7, mais il devra gagner sur deux terrains simultanément : la preuve technique (rendement, masse, longévité) et la preuve sociale (sûreté transparente, conformité internationale). La décennie qui s’ouvre dira si l’humanité allume, pour de bon, sa première centrale sur un autre monde.