The Fort Worth Press - 'Revolutionary': Scientists create mice with two fathers

USD -
AED 3.672504
AFN 65.000368
ALL 81.910403
AMD 376.168126
ANG 1.79008
AOA 917.000367
ARS 1431.790402
AUD 1.425923
AWG 1.8025
AZN 1.70397
BAM 1.654023
BBD 2.008288
BDT 121.941731
BGN 1.67937
BHD 0.375999
BIF 2954.881813
BMD 1
BND 1.269737
BOB 6.889932
BRL 5.217404
BSD 0.997082
BTN 90.316715
BWP 13.200558
BYN 2.864561
BYR 19600
BZD 2.005328
CAD 1.36855
CDF 2200.000362
CHF 0.77566
CLF 0.021803
CLP 860.890396
CNY 6.93895
CNH 6.929815
COP 3684.65
CRC 494.312656
CUC 1
CUP 26.5
CVE 93.82504
CZK 20.504104
DJF 177.555076
DKK 6.322204
DOP 62.928665
DZD 129.553047
EGP 46.73094
ERN 15
ETB 155.0074
EUR 0.846204
FJD 2.209504
FKP 0.738005
GBP 0.734457
GEL 2.69504
GGP 0.738005
GHS 10.957757
GIP 0.738005
GMD 73.000355
GNF 8752.167111
GTQ 7.647681
GYD 208.609244
HKD 7.81385
HNL 26.45504
HRK 6.376104
HTG 130.618631
HUF 319.703831
IDR 16855.5
ILS 3.110675
IMP 0.738005
INR 90.57645
IQD 1310.5
IRR 42125.000158
ISK 122.710386
JEP 0.738005
JMD 156.057339
JOD 0.70904
JPY 157.200504
KES 128.622775
KGS 87.450384
KHR 4033.00035
KMF 419.00035
KPW 900.002243
KRW 1463.803789
KWD 0.30721
KYD 0.830902
KZT 493.331642
LAK 21426.698803
LBP 89293.839063
LKR 308.47816
LRD 187.449786
LSL 16.086092
LTL 2.95274
LVL 0.60489
LYD 6.314009
MAD 9.185039
MDL 17.000296
MGA 4426.402808
MKD 52.129054
MMK 2100.00747
MNT 3580.70414
MOP 8.023933
MRU 39.850379
MUR 46.060378
MVR 15.450378
MWK 1737.000345
MXN 17.263604
MYR 3.947504
MZN 63.750377
NAD 16.086092
NGN 1366.980377
NIO 36.694998
NOK 9.690604
NPR 144.506744
NZD 1.661958
OMR 0.383441
PAB 0.997082
PEN 3.367504
PGK 4.275868
PHP 58.511038
PKR 278.812127
PLN 3.56949
PYG 6588.016407
QAR 3.64135
RON 4.310404
RSD 99.553038
RUB 76.792845
RWF 1455.283522
SAR 3.749738
SBD 8.058149
SCR 13.675619
SDG 601.503676
SEK 9.023204
SGD 1.272904
SHP 0.750259
SLE 24.450371
SLL 20969.499267
SOS 568.818978
SRD 37.818038
STD 20697.981008
STN 20.719692
SVC 8.724259
SYP 11059.574895
SZL 16.08271
THB 31.535038
TJS 9.342721
TMT 3.505
TND 2.847504
TOP 2.40776
TRY 43.612504
TTD 6.752083
TWD 31.590367
TZS 2577.445135
UAH 42.828111
UGX 3547.71872
UYU 38.538627
UZS 12244.069517
VES 377.985125
VND 25950
VUV 119.988021
WST 2.726314
XAF 554.743964
XAG 0.012866
XAU 0.000202
XCD 2.70255
XCG 1.797032
XDR 0.689923
XOF 554.743964
XPF 101.703591
YER 238.403589
ZAR 16.04457
ZMK 9001.203584
ZMW 18.570764
ZWL 321.999592
  • SCS

    0.0200

    16.14

    +0.12%

  • RBGPF

    0.1000

    82.5

    +0.12%

  • CMSD

    0.0600

    23.95

    +0.25%

  • BCC

    1.8700

    91.03

    +2.05%

  • CMSC

    -0.0400

    23.51

    -0.17%

  • BCE

    -0.4900

    25.08

    -1.95%

  • NGG

    1.1700

    88.06

    +1.33%

  • RIO

    2.2900

    93.41

    +2.45%

  • GSK

    1.0600

    60.23

    +1.76%

  • RELX

    -0.7100

    29.38

    -2.42%

  • VOD

    0.4900

    15.11

    +3.24%

  • RYCEF

    0.2600

    16.88

    +1.54%

  • JRI

    0.0900

    12.97

    +0.69%

  • AZN

    5.8700

    193.03

    +3.04%

  • BTI

    0.8400

    62.8

    +1.34%

  • BP

    0.8400

    39.01

    +2.15%

'Revolutionary': Scientists create mice with two fathers
'Revolutionary': Scientists create mice with two fathers / Photo: © JIJI/AFP/File

'Revolutionary': Scientists create mice with two fathers

Scientists have created eggs using the cells of male mice for the first time, leading to the birth of seven mice with two fathers, according to research Wednesday hailed as "revolutionary".

Text size:

The technique pioneered in the proof-of-concept experiment is a long way from potentially being used in humans, with obstacles including a low success rate, adaptation concerns and wide-ranging ethical considerations.

But the breakthrough raises the prospect of a raft of new reproductive possibilities, including that gay male couples -- or even a single man -- could have a biological child without needing a female egg.

The research, published in the journal Nature, was carried out by a team of scientists in Japan led by developmental biologist Katsuhiko Hayashi of the Osaka and Kyushu universities.

Hayashi and his team previously found a way to take skin cells from a female mouse and transform them into an egg that could be used to give birth to healthy pups.

For their latest research, the team aimed to do the same for male cells.

Just like humans, male mice have both an X and Y chromosome, while females have two X chromosomes.

The scientists took skin cells from the tail of a male mouse and, in a dish, turned them into what are called induced pluripotent stem cells, which can become any type of cell.

During this process around six percent of the cells lost their Y chromosome, leaving only an X chromosome -- meaning they were what is known as XO.

Using a fluorescent protein and a drug called reversine, the researchers managed to duplicate the existing X chromosome in these cells, creating an XX set.

- One percent success rate -

The cells were then used to create eggs, which were fertilised with the sperm of a different male mouse and implanted into the uteruses of surrogate female mice.

Out of 630 attempts, seven pups were born, representing a success rate of just over one percent.

The pups do not show any sign of abnormalities and are fertile themselves, the study said.

Hayashi, who first presented the findings at the Third International Summit on Human Genome Editing in London last week, warned that many obstacles remained before the technology could be used for humans.

"There is a big difference between a mouse and a human," he told the summit.

Nitzan Gonen, the head of the sex determination laboratory at Israel's Bar-Ilan University, told AFP that it was a "revolutionary paper", while cautioning that there was a long way to go.

Theoretically, the technique could allow two same-sex male partners to have a baby, one providing the sperm and the other the egg, said Gonen, who was not involved in the research.

One man could even provide both the sperm and the egg, which Gonen said could be "a bit more like cloning, like what they did with Dolly the sheep".

- 'Milestone' -

Jonathan Bayerl and Diana Laird, stem cell and reproductive experts at the University of California, San Francisco, said it was not yet known if the process would even work with human stem cells.

Nonetheless, the research marks "a milestone in reproductive biology", they commented in Nature.

One potential future application could be to bring an endangered species with only one surviving male back from the brink, provided there was a suitable female surrogate from another species, they said.

But Gonen warned that the process was currently "extremely inefficient", with 99 percent of the embryos not surviving.

And while pregnancy takes only three weeks in mice, it lasts nine months in humans, creating much more time for something to go wrong, she added.

If she had to guess, Gonen estimated that "scientifically speaking" the technique could be ready for humans in around 10 to 15 years.

But that did include the time it could take to wade through the ethical considerations that may arise, she added.

"The fact that we can do something does not necessarily mean we want to do it -- especially when we are talking about a new human being."

A.Williams--TFWP