The Fort Worth Press - Drugs from the deep: scientists explore ocean frontiers

USD -
AED 3.672503
AFN 66.000343
ALL 81.750787
AMD 378.260319
ANG 1.79008
AOA 917.000119
ARS 1447.7807
AUD 1.429327
AWG 1.80125
AZN 1.695576
BAM 1.65515
BBD 2.013067
BDT 122.134821
BGN 1.67937
BHD 0.37701
BIF 2960
BMD 1
BND 1.271532
BOB 6.906503
BRL 5.2395
BSD 0.999467
BTN 90.452257
BWP 13.162215
BYN 2.854157
BYR 19600
BZD 2.010138
CAD 1.366615
CDF 2225.000441
CHF 0.777305
CLF 0.021735
CLP 858.210238
CNY 6.938199
CNH 6.93926
COP 3628.58
CRC 495.478914
CUC 1
CUP 26.5
CVE 93.31088
CZK 20.654396
DJF 177.720153
DKK 6.328325
DOP 62.700992
DZD 129.716681
EGP 46.898171
ERN 15
ETB 154.846992
EUR 0.84738
FJD 2.20515
FKP 0.729917
GBP 0.73281
GEL 2.695017
GGP 0.729917
GHS 10.974578
GIP 0.729917
GMD 72.999681
GNF 8771.298855
GTQ 7.666172
GYD 209.107681
HKD 7.812425
HNL 26.40652
HRK 6.385502
HTG 131.004367
HUF 321.707506
IDR 16807
ILS 3.094805
IMP 0.729917
INR 90.44185
IQD 1309.366643
IRR 42125.000158
ISK 122.698337
JEP 0.729917
JMD 156.730659
JOD 0.709031
JPY 156.945499
KES 128.949615
KGS 87.449748
KHR 4034.223621
KMF 418.00016
KPW 899.945137
KRW 1461.704465
KWD 0.30733
KYD 0.83291
KZT 496.518171
LAK 21498.933685
LBP 89504.332961
LKR 309.337937
LRD 185.901857
LSL 15.973208
LTL 2.95274
LVL 0.604889
LYD 6.316351
MAD 9.162679
MDL 16.911242
MGA 4427.744491
MKD 52.212764
MMK 2099.936125
MNT 3569.846682
MOP 8.043143
MRU 39.687396
MUR 45.879676
MVR 15.450132
MWK 1732.791809
MXN 17.32615
MYR 3.935502
MZN 63.749926
NAD 15.973816
NGN 1368.559885
NIO 36.779547
NOK 9.67647
NPR 144.74967
NZD 1.666655
OMR 0.384458
PAB 0.999458
PEN 3.359892
PGK 4.282021
PHP 58.951022
PKR 279.546749
PLN 3.57428
PYG 6615.13009
QAR 3.645472
RON 4.317499
RSD 99.475027
RUB 76.246155
RWF 1458.735317
SAR 3.75002
SBD 8.058101
SCR 13.714455
SDG 601.498038
SEK 8.989675
SGD 1.27291
SHP 0.750259
SLE 24.474968
SLL 20969.499267
SOS 570.224434
SRD 37.894053
STD 20697.981008
STN 20.734071
SVC 8.745065
SYP 11059.574895
SZL 15.972716
THB 31.719961
TJS 9.340239
TMT 3.51
TND 2.890703
TOP 2.40776
TRY 43.529499
TTD 6.770395
TWD 31.672103
TZS 2580.289652
UAH 43.116413
UGX 3558.598395
UYU 38.520938
UZS 12251.99609
VES 371.640565
VND 25982
VUV 119.556789
WST 2.72617
XAF 555.124234
XAG 0.011178
XAU 0.0002
XCD 2.70255
XCG 1.80131
XDR 0.68948
XOF 555.135979
XPF 100.927097
YER 238.374961
ZAR 16.080355
ZMK 9001.194249
ZMW 19.565181
ZWL 321.999592
  • RBGPF

    0.1000

    82.5

    +0.12%

  • SCS

    0.0200

    16.14

    +0.12%

  • CMSD

    -0.0700

    23.87

    -0.29%

  • BP

    0.3800

    39.2

    +0.97%

  • BTI

    -0.2400

    61.63

    -0.39%

  • RIO

    0.1100

    96.48

    +0.11%

  • RELX

    -0.7300

    29.78

    -2.45%

  • CMSC

    -0.1400

    23.52

    -0.6%

  • NGG

    1.5600

    87.79

    +1.78%

  • GSK

    3.8900

    57.23

    +6.8%

  • BCE

    0.2400

    26.34

    +0.91%

  • AZN

    3.1300

    187.45

    +1.67%

  • BCC

    5.3000

    90.23

    +5.87%

  • RYCEF

    -0.3200

    16.68

    -1.92%

  • JRI

    0.0300

    13.15

    +0.23%

  • VOD

    0.4600

    15.71

    +2.93%

Drugs from the deep: scientists explore ocean frontiers
Drugs from the deep: scientists explore ocean frontiers / Photo: © AFP/File

Drugs from the deep: scientists explore ocean frontiers

Some send divers in speed boats, others dispatch submersible robots to search the seafloor, and one team deploys a "mud missile" -- all tools used by scientists to scour the world's oceans for the next potent cancer treatment or antibiotic.

Text size:

A medicinal molecule could be found in microbes scooped up in sediment, be produced by porous sponges or sea squirts -- barrel-bodied creatures that cling to rocks or the undersides of boats -- or by bacteria living symbiotically in a snail.

But once a compound reveals potential for the treatment of, say, Alzheimer's or epilepsy, developing it into a drug typically takes a decade or more, and costs hundreds of millions of dollars.

"Suppose you want to cure cancer -- how do you know what to study?" said William Fenical, a professor at Scripps Institution of Oceanography, considered a pioneer in the hunt for marine-derived medicines.

"You don't."

With tight budgets and little support from big pharma, scientists often piggyback on other research expeditions.

Marcel Jaspars of Scotland's University of Aberdeen said colleagues collect samples by dropping a large metal tube on a 5,000 metres (16,400 feet) cable that "rams" the seafloor. A more sophisticated method uses small, remotely operated underwater vehicles.

"I say to people, all I really want is a tube of mud," he told AFP.

This small but innovative area of marine exploration is in the spotlight at crucial UN high seas treaty negotiations, covering waters beyond national jurisdiction, which could wrap up this week with new rules governing marine protected areas crucial for protecting biodiversity.

Nations have long tussled over how to share benefits from marine genetic resources in the open ocean -- including compounds used in medicines, bioplastics and food stabilisers, said Daniel Kachelriess, a High Seas Alliance co-lead on the issue at the negotiations.

And yet only a small number of products with marine genetic resources find their way onto the market, with just seven recorded in 2019, he said. The value of potential royalties has been estimated at $10 million to $30 million a year.

But the huge biological diversity of the oceans means there is likely much more to be discovered.

"The more we look, the more we find," said Jaspars, whose lab specialises in compounds from the world's extreme environments, like underwater hydrothermal vents and polar regions.

- Natural origins -

Since Alexander Fleming discovered a bacteria-repelling mould he called penicillin in 1928, researchers have studied and synthesised chemical compounds made by mostly land-based plants, animals, insects and microbes to treat human disease.

"The vast majority of the antibiotics and anti-cancer drugs come from natural sources," Fenical told AFP, adding that when he started out in 1973, people were sceptical that the oceans had something to offer.

In one early breakthrough in the mid-1980s, Fenical and colleagues discovered a type of sea whip -- a soft coral -- growing on reefs in the Bahamas that produced a molecule with anti-inflammatory properties.

It caught the eye of cosmetics firm Estee Lauder, which helped develop it for use in its product at the time.

But the quantities of sea whips needed to research and market the compound ultimately led Fenical to abandon marine animals and instead focus on microorganisms.

Researchers scoop sediment from the ocean floor and then grow the microbes they find in the lab.

In 1991 Fenical and his colleagues found a previously-unknown marine bacterium called Salinispora in the mud off the coast of the Bahamas.

More than a decade of work yielded two anti-cancer drugs, one for lung cancer and the other for the untreatable brain tumour glioblastoma. Both are in the final stages of clinical trials.

Fenical -- who at 81 still runs a lab at Scripps -- said researchers were thrilled to have got this far, but the excitement is tempered by caution.

"You never know if something is going to be really good, or not at all useful," he said.

- New frontiers -

That long pipeline is no surprise to Carmen Cuevas Marchante, head of research and development at the Spanish biotech firm PharmaMar.

For their first drug, they started out by cultivating and collecting some 300 tonnes of the bulbous sea squirt.

"From one tonne we could isolate less than one gram" of the compound they needed for clinical trials, she told AFP.

The company now has three cancer drugs approved, all derived from sea squirts, and has fine-tuned its methods for making synthetic versions of natural compounds.

Even if everything goes right, Marchante said, it can take 15 years between discovery and having a product to market.

Overall, there have been 17 marine-derived drugs approved to treat human disease since 1969, with some 40 in various stages of clinical trials around the world, according to the online tracker Marine Drug Pipeline.

Those already on the market include a herpes antiviral from a sponge and a powerful pain drug from a cone snail, but most treat cancer.

That, experts say, is partly because the huge costs of clinical trials -- potentially topping a billion dollars -- favours the development of more expensive drugs.

But there is a "myriad" of early-stage research on marine-derived compounds for anything from malaria to tuberculosis, said Alejandro Mayer, a pharmacology professor at Illinois' Midwestern University who runs the Marine Pipeline project and whose own speciality is the brain's immune system.

That means there is still huge potential to find the next antibiotic or HIV therapy, scientists say.

It might be produced by a creature buried in ocean sediment or quietly clinging to a boat's hull.

Or it could be already in our possession: laboratories around the world hold libraries of compounds that can be tested against new diseases.

"There's a whole new frontier out there," said Fenical.

N.Patterson--TFWP