The Fort Worth Press - Europe’s power shock

USD -
AED 3.672502
AFN 66.374624
ALL 82.891062
AMD 382.105484
ANG 1.790055
AOA 916.999807
ARS 1445.826396
AUD 1.509662
AWG 1.80125
AZN 1.695795
BAM 1.678236
BBD 2.018646
BDT 122.628476
BGN 1.677703
BHD 0.377014
BIF 2961.256275
BMD 1
BND 1.297979
BOB 6.925579
BRL 5.310804
BSD 1.002244
BTN 90.032049
BWP 13.315657
BYN 2.90153
BYR 19600
BZD 2.015729
CAD 1.394875
CDF 2230.000049
CHF 0.80302
CLF 0.023394
CLP 917.730085
CNY 7.07165
CNH 7.067097
COP 3796.99
CRC 491.421364
CUC 1
CUP 26.5
CVE 94.616395
CZK 20.76375
DJF 178.481789
DKK 6.40673
DOP 63.686561
DZD 129.897998
EGP 47.520501
ERN 15
ETB 156.280403
EUR 0.857898
FJD 2.261501
FKP 0.750125
GBP 0.749325
GEL 2.700162
GGP 0.750125
GHS 11.416779
GIP 0.750125
GMD 73.000063
GNF 8709.00892
GTQ 7.677291
GYD 209.68946
HKD 7.78475
HNL 26.389336
HRK 6.462901
HTG 131.282447
HUF 328.445496
IDR 16651.7
ILS 3.235525
IMP 0.750125
INR 89.888095
IQD 1312.956662
IRR 42124.999835
ISK 127.820348
JEP 0.750125
JMD 160.623651
JOD 0.708969
JPY 154.622993
KES 129.250164
KGS 87.45021
KHR 4014.227424
KMF 422.000349
KPW 899.992858
KRW 1470.020022
KWD 0.306802
KYD 0.83526
KZT 506.587952
LAK 21742.171042
LBP 89752.828464
LKR 309.374155
LRD 176.902912
LSL 17.013777
LTL 2.95274
LVL 0.60489
LYD 5.447985
MAD 9.247548
MDL 17.048443
MGA 4457.716053
MKD 52.892165
MMK 2099.902882
MNT 3550.784265
MOP 8.035628
MRU 39.710999
MUR 46.070267
MVR 15.409735
MWK 1737.95151
MXN 18.2142
MYR 4.114026
MZN 63.897023
NAD 17.013777
NGN 1450.250279
NIO 36.881624
NOK 10.095799
NPR 144.049872
NZD 1.732802
OMR 0.384503
PAB 1.002325
PEN 3.37046
PGK 4.251065
PHP 58.991026
PKR 283.139992
PLN 3.631841
PYG 6950.492756
QAR 3.663323
RON 4.367199
RSD 100.707975
RUB 76.00652
RWF 1458.303837
SAR 3.753008
SBD 8.223823
SCR 14.340982
SDG 601.504905
SEK 9.41351
SGD 1.29484
SHP 0.750259
SLE 22.999887
SLL 20969.498139
SOS 571.823287
SRD 38.643498
STD 20697.981008
STN 21.023817
SVC 8.769634
SYP 11056.894377
SZL 17.008825
THB 31.89005
TJS 9.210862
TMT 3.5
TND 2.941946
TOP 2.40776
TRY 42.517902
TTD 6.795179
TWD 31.297984
TZS 2449.999928
UAH 42.259148
UGX 3553.316915
UYU 39.265994
UZS 11939.350775
VES 248.585902
VND 26365
VUV 122.113889
WST 2.800321
XAF 562.862377
XAG 0.017154
XAU 0.000237
XCD 2.70255
XCG 1.806356
XDR 0.70002
XOF 562.867207
XPF 102.334841
YER 238.414547
ZAR 16.960985
ZMK 9001.19956
ZMW 23.026725
ZWL 321.999592
  • BCC

    -2.3000

    74.26

    -3.1%

  • JRI

    0.0500

    13.75

    +0.36%

  • SCS

    -0.1200

    16.23

    -0.74%

  • RBGPF

    0.0000

    78.35

    0%

  • NGG

    -0.5800

    75.91

    -0.76%

  • RYCEF

    0.4600

    14.67

    +3.14%

  • AZN

    -0.8200

    90.03

    -0.91%

  • CMSC

    0.0400

    23.48

    +0.17%

  • RIO

    -0.5500

    73.73

    -0.75%

  • CMSD

    -0.0300

    23.32

    -0.13%

  • VOD

    0.0500

    12.64

    +0.4%

  • GSK

    -0.4000

    48.57

    -0.82%

  • BCE

    0.0400

    23.22

    +0.17%

  • RELX

    0.3500

    40.54

    +0.86%

  • BTI

    0.5300

    58.04

    +0.91%

  • BP

    -0.0100

    37.23

    -0.03%


Europe’s power shock




On 28 April 2025, an unprecedented power failure plunged most of Spain and Portugal into darkness. Within seconds the Iberian Peninsula lost around 15 gigawatts of generation—roughly 60 % of demand. Flights were grounded, public transport stopped, hospitals cancelled routine operations and emergency services were stretched. Spain’s interior ministry declared a national emergency, deploying 30 000 police officers, while grid operators scrambled to restore power. The outage, thought to have originated in a failed interconnector with France, highlighted the fragility of Europe’s interconnected grids. An industry association later reported that it took 23 hours for the Iberian grid to return to normal capacity.

Energy analysts noted that the blackout was not only a technical failure but also a structural one. Spain and Portugal depend heavily on wind and solar power, which provide more than 40 % of Spain’s electricity and over 60 % in Portugal. These sources supply little rotational inertia, so when the France–Spain interconnector tripped the system lacked the flexibility and backup capacity to stabilise itself. Reliance on a single interconnector also left the peninsula “islanded” and unable to import power quickly.

A continent on edge
The Iberian blackout came against a backdrop of soaring energy prices, economic malaise and rising electricity demand from data centres and electrified transport. Europe has spent the past two years grappling with the fallout from Russia’s invasion of Ukraine, which cut cheap gas supplies and forced governments to scramble for alternative fuels. Germany’s Energiewende, once a model for the energy transition, has been strained. After shutting down its last three reactors on 15 April 2023, Germany shifted from being a net exporter of electricity to a net importer; by November 2024 imports reached 25 terawatt‑hours, nearly triple the 2023 level. About half of the imported electricity came from France, Switzerland and Belgium—countries whose power systems are dominated by nuclear energy. Germany’s gross domestic product shrank 0.3 % in 2023 and was expected to contract again in 2024, and a survey of 3 300 businesses found that 37 % were considering reducing production or relocating because of high energy costs; the figure was 45 % among energy‑intensive firms.

The collapse of domestic nuclear generation has increased Germany’s reliance on coal and gas. In the first half of 2025 the share of fossil‑fuel electricity rose to 42.2 %, up from 38.4 % a year earlier, while power from renewables fell by almost six percent. Coal‑fired generation increased 9.3 % and gas‑fired output 11.6 %; weak winds cut wind output by 18 %, even as solar photovoltaic production jumped 28 %. The result has been higher emissions and greater dependence on imports.

Yet Germany’s grid remains resilient: the Federal Network Agency reported that power disruptions averaged 11.7 minutes per customer in 2024—one of the lowest figures in Europe—and the energy transition has not compromised supply security. Nevertheless, researchers warn that unexpected shocks like the Iberian blackout could occur if investment in grid flexibility and storage does not keep pace.

Nuclear renaissance across Europe
The energy crisis has prompted many European governments to re‑examine nuclear energy. Belgium has repealed its nuclear‑phase‑out law and plans new reactors, arguing that nuclear power provides reliable, low‑carbon electricity. Denmark, Italy, Poland, Sweden and Spain have all signalled interest in building new plants or extending existing reactors. Italy intends to bring nuclear power back by 2030, while Denmark and Sweden are exploring small modular reactors. The European Union already has about 100 reactors that supply almost a quarter of its electricity. Nuclear plants emit few air pollutants and provide round‑the‑clock power, making them attractive for countries seeking to cut emissions and reduce reliance on gas. Critics remain concerned about waste disposal and the possibility that investment in nuclear could divert resources from renewables.

This shift is visible at the political level. In September 2025, France and Germany adopted a joint energy roadmap that recognises nuclear energy as a low‑carbon technology eligible for European financing. The roadmap aims to end discrimination against nuclear projects and represents a departure from Germany’s long‑standing opposition. It does not alter national policies but signals a shared stance in forthcoming EU negotiations.

Germany’s political U‑turn
Germany’s nuclear exit has become a central issue in domestic politics. Surveys show that two‑thirds of Germans support the continued use of nuclear energy, and more than 40 % favour building new plants. A 2024 report argued that there are no significant technical obstacles to restarting closed reactors and that three units could be back online by 2028 if decommissioning were halted, adding about 4 gigawatts of capacity. The same report noted that a moratorium on dismantling reactors and amendments to the Atomic Energy Act are urgent prerequisites.

During the February 2025 election campaign, conservative leader Friedrich Merz pledged to revive nuclear power and build 50 gas‑fired plants to stabilise the grid. His party’s manifesto proposed an expert review on restarting closed reactors and research into advanced technologies such as small modular reactors. In a surprising political shift, Merz’s government subsequently stopped blocking efforts at the European level to recognise nuclear power as a sustainable investment. At a Franco‑German summit in Toulon, he and French president Emmanuel Macron agreed on the principle of non‑discrimination for nuclear projects in EU financing.

However, the internal debate is far from settled. Katherina Reiche, Germany’s economy and energy minister, ruled out a return to conventional nuclear plants, saying that the phase‑out is complete and that companies lack the confidence to invest. She argued that the opportunity to extend the last three reactors during the crisis had been missed and emphasised the government’s focus on developing a domestic fusion reactor and potentially small modular reactors. Reiche also insisted on a “reality check” for renewable expansion and called for up to 20 gigawatts of new gas‑fired backup capacity. Her position reflects caution within the coalition, and some experts note that restarting closed reactors may face legal and economic hurdles.

Industrial relief and future challenges
High energy costs continue to burden German industry. In November 2025 the ruling coalition agreed to introduce a subsidised power price of five euro cents per kilowatt‑hour for energy‑intensive companies until 2028, pending EU approval. The plan aims to ease the competitive disadvantage faced by manufacturers and includes tendering eight gigawatts of new gas‑fired capacity. Critics argue that subsidies are a stop‑gap and that longer‑term competitiveness requires affordable, low‑carbon baseload power and streamlined permitting for renewable projects.

The Iberian blackout served as a warning that Europe’s future grid must be flexible and resilient. Analysts emphasise the need for more interconnectors, battery storage and demand‑side management to accommodate variable renewables. Germany’s grid reliability remains among the best in Europe, yet the country’s growing dependence on imports and fossil fuels raises concerns about security and climate targets. The energy crisis has revived nuclear energy as a serious option across Europe, forcing policymakers to balance decarbonisation with security of supply. Whether Germany fully embraces nuclear again remains uncertain, but the debate underscores a broader realisation: the energy transition requires a diversified mix of technologies, robust infrastructure and pragmatic policies rather than dogma.