The Fort Worth Press - The surprising climate power of penguin poo

USD -
AED 3.672498
AFN 64.99985
ALL 81.642835
AMD 377.219685
ANG 1.79008
AOA 916.999843
ARS 1444.993903
AUD 1.42456
AWG 1.8025
AZN 1.739919
BAM 1.653821
BBD 2.007458
BDT 121.808396
BGN 1.67937
BHD 0.376972
BIF 2953.360646
BMD 1
BND 1.26696
BOB 6.887396
BRL 5.239199
BSD 0.996711
BTN 90.052427
BWP 13.76724
BYN 2.855766
BYR 19600
BZD 2.004583
CAD 1.364735
CDF 2199.999662
CHF 0.775705
CLF 0.021794
CLP 860.539698
CNY 6.938198
CNH 6.93276
COP 3646.93
CRC 495.031923
CUC 1
CUP 26.5
CVE 93.239472
CZK 20.586902
DJF 177.491777
DKK 6.316395
DOP 62.762674
DZD 129.844036
EGP 46.980399
ERN 15
ETB 154.611983
EUR 0.84571
FJD 2.1993
FKP 0.732491
GBP 0.72983
GEL 2.695038
GGP 0.732491
GHS 10.919207
GIP 0.732491
GMD 73.000372
GNF 8744.661959
GTQ 7.645019
GYD 208.524474
HKD 7.814655
HNL 26.334616
HRK 6.373299
HTG 130.737911
HUF 322.122501
IDR 16769.95
ILS 3.082015
IMP 0.732491
INR 90.40995
IQD 1305.693436
IRR 42125.000158
ISK 122.629894
JEP 0.732491
JMD 156.204812
JOD 0.709
JPY 156.258503
KES 128.529975
KGS 87.449958
KHR 4021.613211
KMF 417.999855
KPW 899.987247
KRW 1452.425026
KWD 0.307159
KYD 0.830631
KZT 499.708267
LAK 21439.292404
LBP 89256.37795
LKR 308.507985
LRD 185.387344
LSL 15.964383
LTL 2.95274
LVL 0.60489
LYD 6.301423
MAD 9.14286
MDL 16.878982
MGA 4417.422775
MKD 52.122662
MMK 2100.119929
MNT 3568.429082
MOP 8.020954
MRU 39.790284
MUR 45.890364
MVR 15.450285
MWK 1728.325117
MXN 17.229695
MYR 3.926496
MZN 63.749894
NAD 15.964451
NGN 1388.150183
NIO 36.682353
NOK 9.630169
NPR 144.090313
NZD 1.657485
OMR 0.384517
PAB 0.996706
PEN 3.355418
PGK 4.270433
PHP 58.972499
PKR 278.75798
PLN 3.57305
PYG 6612.604537
QAR 3.624302
RON 4.309303
RSD 99.328011
RUB 76.999691
RWF 1454.737643
SAR 3.750016
SBD 8.058101
SCR 13.853199
SDG 601.501385
SEK 8.897095
SGD 1.27083
SHP 0.750259
SLE 24.475023
SLL 20969.499267
SOS 568.686313
SRD 38.1145
STD 20697.981008
STN 20.71794
SVC 8.721498
SYP 11059.574895
SZL 15.970032
THB 31.581504
TJS 9.314268
TMT 3.51
TND 2.882209
TOP 2.40776
TRY 43.500704
TTD 6.751283
TWD 31.581995
TZS 2584.039701
UAH 43.134476
UGX 3553.202914
UYU 38.389826
UZS 12201.979545
VES 371.640565
VND 25978.5
VUV 119.537583
WST 2.726316
XAF 554.697053
XAG 0.011471
XAU 0.000198
XCD 2.70255
XCG 1.796311
XDR 0.689842
XOF 554.678291
XPF 100.846021
YER 238.37502
ZAR 15.96065
ZMK 9001.200846
ZMW 19.560456
ZWL 321.999592
  • SCS

    0.0200

    16.14

    +0.12%

  • RYCEF

    0.2600

    16.93

    +1.54%

  • CMSD

    -0.1400

    23.94

    -0.58%

  • RBGPF

    -2.1000

    82.1

    -2.56%

  • CMSC

    -0.0900

    23.66

    -0.38%

  • GSK

    0.8700

    53.34

    +1.63%

  • BCE

    0.2700

    26.1

    +1.03%

  • BP

    1.1200

    38.82

    +2.89%

  • NGG

    1.6200

    86.23

    +1.88%

  • BTI

    0.8800

    61.87

    +1.42%

  • RIO

    3.8500

    96.37

    +4%

  • VOD

    0.3400

    15.25

    +2.23%

  • BCC

    3.1800

    84.93

    +3.74%

  • JRI

    -0.0300

    13.12

    -0.23%

  • AZN

    -4.0900

    184.32

    -2.22%

  • RELX

    -5.0200

    30.51

    -16.45%

The surprising climate power of penguin poo
The surprising climate power of penguin poo / Photo: © AFP/File

The surprising climate power of penguin poo

Antarctica's icy wilderness is warming rapidly under the weight of human-driven climate change, yet a new study points to an unlikely ally in the fight to keep the continent cool: penguin poo.

Text size:

Published Thursday in Communications Earth & Environment, the research shows that ammonia wafting off penguin guano seeds extra cloud cover above coastal Antarctica, likely blocking sunlight and nudging temperatures down.

Lead author Matthew Boyer, an atmospheric scientist at the University of Helsinki, told AFP that lab studies had long shown gaseous ammonia can help form clouds.

But "to actually quantify this process and to see its influence in Antarctica hasn't been done," he said.

Antarctica is an ideal natural laboratory. With virtually no human pollution and scant vegetation -- both alternative sources of cloud-forming gases -- penguin colonies dominate as ammonia emitters.

The birds' future, however, is under threat.

Shrinking sea ice disrupts their nesting, feeding and predator-avoidance routines -- making it all the more urgent to understand their broader ecological role.

Along with other seabirds such as Imperial Shags, penguins expel large amounts of ammonia through droppings, an acrid cocktail of feces and urine released via their multi-purpose cloacas.

When that ammonia mixes with sulfur-bearing gases from phytoplankton -- the microscopic algae that bloom in the surrounding ocean -- it boosts the formation of tiny aerosol particles that grow into clouds.

To capture the effect in the real world, Boyer and teammates set up instruments at Argentina's Marambio Base on Seymour Island, off the northern tip of the Antarctic Peninsula.

Over three summer months -- when penguin colonies are bustling and phytoplankton photosynthesis peaks -- they monitored wind direction, ammonia levels and newly minted aerosols.

When the breeze blew from a 60,000-strong Adelie penguin colony eight kilometers (five miles) away, atmospheric ammonia spiked to 13.5  parts per billion -- about a thousand times the background level.

For over a month after the birds had departed on their annual migration, concentrations stayed roughly 100 times higher, with the guano-soaked ground acting as a slow-release fertilizer.

Particle counters told the same story: cloud-seeding aerosols surged whenever air masses arrived from the colony, at times thick enough to generate a dense fog.

Chemical fingerprints in the particles pointed back to penguin-derived ammonia.

- Penguin-plankton partnership -

Boyer calls it a "synergistic process" between penguins and phytoplankton that supercharges aerosol production in the region.

"We provide evidence that declining penguin populations could cause a positive climate-warming feedback in the summertime Antarctic atmosphere," the authors write -- though Boyer emphasized that this remains a hypothesis, not a confirmed outcome.

Globally, clouds have a net cooling effect by reflecting solar radiation back into space. Based on Arctic modeling of seabird emissions, the team believes a similar mechanism is likely at play in Antarctica.

But the impact also depends on what's beneath the clouds.

Ice sheets and glaciers also reflect much of the Sun's energy, so extra cloud cover over these bright surfaces could trap infrared heat instead -- meaning the overall effect hinges on where the clouds form and drift.

Still, the findings highlight the profound interconnections between life and the atmosphere -- from the Great Oxygenation Event driven by photosynthesizing microbes billions of years ago to penguins influencing cloud cover today.

"This is just another example of this deep connection between the ecosystem and atmospheric processes, and why we should care about biodiversity and conservation," Boyer said.

M.Delgado--TFWP