The Fort Worth Press - What are proteins again? Nobel-winning chemistry explained

USD -
AED 3.672504
AFN 66.067856
ALL 82.329403
AMD 381.252395
ANG 1.790403
AOA 917.000367
ARS 1440.750402
AUD 1.502178
AWG 1.8
AZN 1.70397
BAM 1.665148
BBD 2.010898
BDT 122.012686
BGN 1.66663
BHD 0.375208
BIF 2951.002512
BMD 1
BND 1.28943
BOB 6.898812
BRL 5.419704
BSD 0.998425
BTN 90.29075
BWP 13.228896
BYN 2.94334
BYR 19600
BZD 2.008003
CAD 1.37795
CDF 2240.000362
CHF 0.797632
CLF 0.023203
CLP 910.250396
CNY 7.054504
CNH 7.05355
COP 3802.477545
CRC 499.425312
CUC 1
CUP 26.5
CVE 93.878507
CZK 20.669104
DJF 177.795752
DKK 6.361804
DOP 63.471117
DZD 129.080073
EGP 47.313439
ERN 15
ETB 156.002554
EUR 0.851404
FJD 2.271804
FKP 0.749181
GBP 0.749372
GEL 2.703861
GGP 0.749181
GHS 11.461411
GIP 0.749181
GMD 73.000355
GNF 8683.325529
GTQ 7.647184
GYD 208.879997
HKD 7.78025
HNL 26.285812
HRK 6.417704
HTG 130.867141
HUF 327.990388
IDR 16633.75
ILS 3.222795
IMP 0.749181
INR 90.570104
IQD 1307.905155
IRR 42122.503816
ISK 126.403814
JEP 0.749181
JMD 159.856966
JOD 0.70904
JPY 155.76504
KES 128.74718
KGS 87.450384
KHR 3997.275552
KMF 419.503794
KPW 899.985916
KRW 1474.530383
KWD 0.306704
KYD 0.832063
KZT 520.710059
LAK 21644.885275
LBP 89408.028607
LKR 308.509642
LRD 176.22068
LSL 16.844664
LTL 2.95274
LVL 0.60489
LYD 5.423354
MAD 9.185305
MDL 16.877953
MGA 4422.970499
MKD 52.403048
MMK 2099.89073
MNT 3548.272408
MOP 8.006045
MRU 39.956579
MUR 45.920378
MVR 15.403739
MWK 1731.301349
MXN 18.013904
MYR 4.097304
MZN 63.910377
NAD 16.844664
NGN 1452.570377
NIO 36.745988
NOK 10.137304
NPR 144.46554
NZD 1.696497
OMR 0.382674
PAB 0.998425
PEN 3.361458
PGK 4.303776
PHP 59.115038
PKR 279.805628
PLN 3.59745
PYG 6706.398195
QAR 3.638755
RON 4.335904
RSD 99.936146
RUB 79.434677
RWF 1453.152271
SAR 3.752205
SBD 8.176752
SCR 15.027038
SDG 601.503676
SEK 9.269904
SGD 1.292104
SHP 0.750259
SLE 24.125038
SLL 20969.503664
SOS 569.579839
SRD 38.548038
STD 20697.981008
STN 20.859052
SVC 8.736112
SYP 11057.088706
SZL 16.838789
THB 31.595038
TJS 9.175429
TMT 3.51
TND 2.918735
TOP 2.40776
TRY 42.580368
TTD 6.775361
TWD 31.335104
TZS 2471.074028
UAH 42.185773
UGX 3548.593078
UYU 39.180963
UZS 12028.436422
VES 267.43975
VND 26306
VUV 121.393357
WST 2.775465
XAF 558.475161
XAG 0.016138
XAU 0.000232
XCD 2.70255
XCG 1.799413
XDR 0.694564
XOF 558.475161
XPF 101.536759
YER 238.503589
ZAR 16.87546
ZMK 9001.203584
ZMW 23.038611
ZWL 321.999592
  • RBGPF

    0.0000

    81.17

    0%

  • SCS

    0.0200

    16.14

    +0.12%

  • GSK

    -0.0700

    48.81

    -0.14%

  • NGG

    0.2400

    74.93

    +0.32%

  • RELX

    0.1000

    40.38

    +0.25%

  • RIO

    -1.0800

    75.66

    -1.43%

  • CMSC

    -0.1300

    23.3

    -0.56%

  • CMSD

    -0.1500

    23.25

    -0.65%

  • AZN

    -0.4600

    89.83

    -0.51%

  • RYCEF

    -0.2500

    14.6

    -1.71%

  • BTI

    -1.2700

    57.1

    -2.22%

  • BCE

    0.3100

    23.71

    +1.31%

  • BCC

    0.2500

    76.51

    +0.33%

  • VOD

    0.0500

    12.59

    +0.4%

  • JRI

    -0.0200

    13.7

    -0.15%

  • BP

    -0.2700

    35.26

    -0.77%

What are proteins again? Nobel-winning chemistry explained
What are proteins again? Nobel-winning chemistry explained / Photo: © AFP/File

What are proteins again? Nobel-winning chemistry explained

The Nobel Prize in Chemistry was awarded on Wednesday to three scientists who have help unravel some of the enduring secrets of proteins, the building blocks of life.

Text size:

While Demis Hassabis and John Jumper of Google's DeepMind lab used artificial intelligence techniques to predict the structure of proteins, biochemist David Baker managed to design totally new ones never seen in nature.

These breakthroughs are hoped to lead towards numerous advances, from discovering new drugs to enzymes that decompose pollutants.

Here is an explainer about the science behind the Nobel win.

- What are proteins? -

Proteins are molecules that serve as "the factories of everything that happens in our body," Davide Calebiro, a protein researcher at the UK's University of Birmingham, told AFP.

DNA provides the blueprint for every cell. Proteins then use this information to do the work of turning that cell into something specific -- such as a brain cell or a muscle cell.

Proteins are made up of 20 different kinds of amino acid. The sequence that these acids start out in determines what 3D structure they will twist and fold into.

American Chemical Society president Mary Carroll compared how this works to an old-fashioned telephone cord.

"So you could stretch out that telephone cord, and then you would just have a one-dimensional structure," she told AFP.

"Then it would spring back" into the 3D shape, she added.

So if chemists wanted to master proteins, they needed to understand how the 2D sequences turned into these 3D structures.

"Nature already provides tens of thousands of different proteins, but sometimes we want them to do something they do not yet know how to do," said French biochemist Sophie Sacquin-Mora.

- What did AI do? -

The work of previous Nobel winners had demonstrated that chemists should be able to look at amino acid sequences and predict the structure they would become.

But it was not so easy. Chemists struggled for 50 years -- there was even a biannual competition called the "Protein Olympics" where many failed the prediction test.

Enter Hassabis and Jumper. They trained their artificial intelligence model AlphaFold on all the known amino acid sequences and corresponding structures.

When given an unknown sequence, AlphaFold compares it with previous ones, gradually reconstructing the puzzle in three dimensions.

After the newer generation AlphaFold2 crushed the 2020 Protein Olympics, the organisers deemed the problem solved.

The model has now predicted the structure of almost all of the 200 million proteins known on Earth.

- What about the new proteins? -

US biochemist Baker started at the opposite end of the process.

First, he designed an entirely new protein structure never seen in nature.

Then, using a computer programme called Rosetta that he had developed, he was able to work out the amino acid sequence that it started out as.

To achieve this, Rosetta trawled through all the known protein structures, searching for short protein fragments similar to the structure it wanted to build.

Rosetta then tweaked them and proposed a sequence that could end up as the structure.

- What is all this for? -

Mastering such fundamental and important little machines as proteins could have a vast number of potential uses in the future.

"It allows us to better understand how life functions, including why some diseases develop, how antibiotic resistance occurs or why some microbes can decompose plastic," the Nobel website said.

Making all-new proteins could lead to new nanomaterials, targeted drugs and vaccines, or more climate-friendly chemicals, it added.

Asked to pick a favourite protein, Baker pointed to one he "designed during the pandemic that protects against the coronavirus".

 

Calebiro emphasised how "transformative" this research would be.

"I think this is just the beginning of a completely new era."

S.Palmer--TFWP