The Fort Worth Press - From oil spills to new species: how tech reveals the ocean

USD -
AED 3.672498
AFN 66.135424
ALL 82.428003
AMD 381.697608
ANG 1.790403
AOA 917.000333
ARS 1440.719298
AUD 1.503556
AWG 1.8
AZN 1.698617
BAM 1.6671
BBD 2.013298
BDT 122.155689
BGN 1.666095
BHD 0.376959
BIF 2954.536737
BMD 1
BND 1.290974
BOB 6.906898
BRL 5.403152
BSD 0.999616
BTN 90.396959
BWP 13.244683
BYN 2.94679
BYR 19600
BZD 2.010374
CAD 1.37658
CDF 2240.000343
CHF 0.795735
CLF 0.023238
CLP 911.629427
CNY 7.054505
CNH 7.041445
COP 3801.6
CRC 500.023441
CUC 1
CUP 26.5
CVE 93.988535
CZK 20.66805
DJF 178.007927
DKK 6.35678
DOP 63.547132
DZD 129.654932
EGP 47.449851
ERN 15
ETB 156.189388
EUR 0.850931
FJD 2.253797
FKP 0.748248
GBP 0.74691
GEL 2.70203
GGP 0.748248
GHS 11.474844
GIP 0.748248
GMD 73.000007
GNF 8692.206077
GTQ 7.656114
GYD 209.124811
HKD 7.78223
HNL 26.31718
HRK 6.410897
HTG 131.023872
HUF 327.803501
IDR 16673.45
ILS 3.20699
IMP 0.748248
INR 90.72575
IQD 1309.438063
IRR 42122.494452
ISK 126.299846
JEP 0.748248
JMD 160.047735
JOD 0.708952
JPY 154.966501
KES 128.950385
KGS 87.449685
KHR 4002.062831
KMF 419.501996
KPW 899.999687
KRW 1464.35502
KWD 0.30682
KYD 0.833039
KZT 521.320349
LAK 21670.253798
LBP 89512.817781
LKR 308.871226
LRD 176.427969
LSL 16.864406
LTL 2.95274
LVL 0.60489
LYD 5.429826
MAD 9.19607
MDL 16.897807
MGA 4428.248732
MKD 52.4169
MMK 2099.265884
MNT 3545.865278
MOP 8.015428
MRU 40.004433
MUR 45.950131
MVR 15.398937
MWK 1733.36743
MXN 17.978805
MYR 4.0925
MZN 63.910031
NAD 16.864406
NGN 1451.530241
NIO 36.789996
NOK 10.13585
NPR 144.638557
NZD 1.725615
OMR 0.384498
PAB 0.999595
PEN 3.365397
PGK 4.308177
PHP 58.924995
PKR 280.140733
PLN 3.59277
PYG 6714.401398
QAR 3.643004
RON 4.335502
RSD 99.943984
RUB 79.121636
RWF 1454.886417
SAR 3.752081
SBD 8.176752
SCR 14.658273
SDG 601.499594
SEK 9.28439
SGD 1.288906
SHP 0.750259
SLE 24.125013
SLL 20969.503664
SOS 570.259558
SRD 38.547979
STD 20697.981008
STN 20.880385
SVC 8.746351
SYP 11056.681827
SZL 16.85874
THB 31.431503
TJS 9.186183
TMT 3.51
TND 2.922143
TOP 2.40776
TRY 42.701498
TTD 6.783302
TWD 31.318031
TZS 2482.490189
UAH 42.236116
UGX 3552.752147
UYU 39.226383
UZS 12042.534149
VES 267.43975
VND 26320
VUV 121.127634
WST 2.775483
XAF 559.141627
XAG 0.015656
XAU 0.00023
XCD 2.70255
XCG 1.801522
XDR 0.695393
XOF 559.141627
XPF 101.655763
YER 238.499715
ZAR 16.776101
ZMK 9001.197187
ZMW 23.065809
ZWL 321.999592
  • RIO

    -1.0800

    75.66

    -1.43%

  • CMSC

    -0.1300

    23.3

    -0.56%

  • SCS

    0.0200

    16.14

    +0.12%

  • RBGPF

    0.0000

    81.17

    0%

  • BCC

    0.2500

    76.51

    +0.33%

  • RYCEF

    -0.2500

    14.6

    -1.71%

  • BTI

    -1.2700

    57.1

    -2.22%

  • NGG

    0.2400

    74.93

    +0.32%

  • BCE

    0.3100

    23.71

    +1.31%

  • CMSD

    -0.1500

    23.25

    -0.65%

  • RELX

    0.1000

    40.38

    +0.25%

  • GSK

    -0.0700

    48.81

    -0.14%

  • JRI

    -0.0200

    13.7

    -0.15%

  • VOD

    0.0500

    12.59

    +0.4%

  • BP

    -0.2700

    35.26

    -0.77%

  • AZN

    -0.4600

    89.83

    -0.51%

From oil spills to new species: how tech reveals the ocean
From oil spills to new species: how tech reveals the ocean / Photo: © AFP

From oil spills to new species: how tech reveals the ocean

The ocean covers nearly three-quarters of our planet but scientists say we have barely scratched the surface of what lives in our seas.

Text size:

But new technologies are helping to change that, revealing hidden oil spills, speeding up the discovery of new species and uncovering how light pollution impacts marine life.

Uncovering hidden oil spills

Satellite imagery means large oil spills in the ocean are relatively easily detected. When a tanker crashes or a pipe bursts, scientists know where to look.

But smaller pollution events can appear as nothing more than a thin streak against the smooth sea surface -- the maritime equivalent of a needle in a haystack.

"It used to take human analysts weeks if not months to be able to detect a single (small-scale) oil pollution incident," explained Mitchelle De Leon of US-based NGO SkyTruth.

The group harnesses machine learning to comb through large datasets of satellite imagery and find spills that might previously have gone undetected.

SkyTruth has revealed spills in the Red Sea and the Mediterranean and helped expose pollution from shadowy Russian ships.

There are limitations to the technology, including determining the composition of a spill, but the group says it offers an early warning system for scientists, media and governments.

"We think of our tool as a starting point... to make hidden human pollution events more visible," said De Leon.

Understanding light pollution

We have long known that our obsession with lighting the night sky obscures the stars and confuses terrestrial animals, but what impact does it have on the sea?

To understand that, scientists need satellite images to show how light spreads from coastal megacities, as well as complex models that can calculate how light penetrates the ocean, said Tim Smyth, a marine biogeochemistry specialist at Britain's Plymouth Marine Laboratory.

Seawater generally absorbs more red light, but that can change in the presence of phytoplankton or high turbidity.

"We're able to programme computers such that we can model the light field under the water with a high degree of accuracy," said Smyth.

His research found two million square kilometres (770,000 square miles) of ocean -- an area 10 times the size of Britain -- is affected by light pollution globally.

The effects are profound, from disrupting feeding by fish and seabirds, to interfering with coral spawning and the nightly migrations of phytoplankton up and down the water column.

The good news is "it's something we can do something about", said Smyth.

Switching off unnecessary illuminations such as billboards and redesigning lights to reduce "spillage" into the sky will bring down costs and carbon emissions while benefitting wildlife on land and in the sea, he explained.

Species discovery

Advances in technology have allowed us to reach the ocean's darkest depths but scientists estimate we know about just 10 percent of what lives in our seas.

And before we even realise a new species exists, "we are losing that diversity", said Lucy Woodall, a marine biologist and head of science at Ocean Census.

Launched in 2023, the global alliance of scientists aims to speed up the discovery of ocean species from coral to crabs.

That works in part by collaborating with high-tech, lab-equipped research vessels where researchers can immediately start work on collected specimens.

Genetic sequencing can now be done in the field, "which even 10 years ago would have been months and months worth of work back on land", said Woodall.

On average, it takes more than 13 years from finding a possible new species to officially describing it for science.

"We can't afford to wait for that," said Woodall.

The project encourages scientists to share findings sooner, with an explanation of why they believe a species is new.

It won't replace the slower work of proving new species with methods such as genetic testing but it can accelerate knowledge at a time of urgency.

The project has documented more than 800 new discoveries, which are shared on its open-access biodiversity platform.

"We want to ensure that companies, countries, individuals really value the ocean and ocean life for what it does for them and our planet," said Woodall.

G.George--TFWP