The Fort Worth Press - Milky Way's black hole surrounded by strong magnetic fields: astronomers

USD -
AED 3.672504
AFN 66.265317
ALL 82.40468
AMD 381.537936
ANG 1.790403
AOA 917.000367
ARS 1449.250402
AUD 1.508523
AWG 1.8025
AZN 1.70397
BAM 1.670125
BBD 2.014261
BDT 122.309039
BGN 1.670704
BHD 0.377951
BIF 2957.004398
BMD 1
BND 1.292857
BOB 6.910892
BRL 5.541304
BSD 1.000043
BTN 89.607617
BWP 14.066863
BYN 2.939243
BYR 19600
BZD 2.011357
CAD 1.37965
CDF 2558.50392
CHF 0.79556
CLF 0.023213
CLP 910.640396
CNY 7.04095
CNH 7.033604
COP 3808
CRC 499.466291
CUC 1
CUP 26.5
CVE 94.159088
CZK 20.779904
DJF 178.088041
DKK 6.380104
DOP 62.644635
DZD 130.069596
EGP 47.704197
ERN 15
ETB 155.362794
EUR 0.853804
FJD 2.283704
FKP 0.746974
GBP 0.747496
GEL 2.68504
GGP 0.746974
GHS 11.486273
GIP 0.746974
GMD 73.000355
GNF 8741.72751
GTQ 7.663208
GYD 209.231032
HKD 7.78155
HNL 26.346441
HRK 6.434404
HTG 131.121643
HUF 330.190388
IDR 16697
ILS 3.20705
IMP 0.746974
INR 89.57735
IQD 1310.106315
IRR 42100.000352
ISK 125.630386
JEP 0.746974
JMD 160.018787
JOD 0.70904
JPY 157.75804
KES 128.909953
KGS 87.450384
KHR 4013.492165
KMF 420.00035
KPW 899.985447
KRW 1475.760383
KWD 0.30723
KYD 0.83344
KZT 517.535545
LAK 21660.048674
LBP 89556.722599
LKR 309.636651
LRD 177.012083
LSL 16.776824
LTL 2.95274
LVL 0.60489
LYD 5.420776
MAD 9.166901
MDL 16.930959
MGA 4548.055164
MKD 52.559669
MMK 2099.831872
MNT 3551.409668
MOP 8.015542
MRU 40.023056
MUR 46.150378
MVR 15.450378
MWK 1734.170189
MXN 18.033704
MYR 4.077039
MZN 63.903729
NAD 16.776824
NGN 1460.160377
NIO 36.804577
NOK 10.138704
NPR 143.372187
NZD 1.737016
OMR 0.385423
PAB 1.000043
PEN 3.367832
PGK 4.254302
PHP 58.571038
PKR 280.195978
PLN 3.59225
PYG 6709.363392
QAR 3.641038
RON 4.335404
RSD 100.004038
RUB 80.695957
RWF 1456.129115
SAR 3.750651
SBD 8.146749
SCR 15.161607
SDG 601.503676
SEK 9.268304
SGD 1.293304
SHP 0.750259
SLE 24.050371
SLL 20969.503664
SOS 570.513642
SRD 38.441504
STD 20697.981008
STN 20.921395
SVC 8.750267
SYP 11057.107339
SZL 16.774689
THB 31.425038
TJS 9.215661
TMT 3.5
TND 2.927287
TOP 2.40776
TRY 42.746504
TTD 6.787925
TWD 31.518904
TZS 2495.196618
UAH 42.285385
UGX 3577.131634
UYU 39.263908
UZS 12022.543871
VES 282.15965
VND 26312.5
VUV 121.400054
WST 2.789362
XAF 560.144315
XAG 0.014892
XAU 0.000231
XCD 2.70255
XCG 1.8024
XDR 0.69664
XOF 560.144315
XPF 101.840229
YER 238.403589
ZAR 16.77901
ZMK 9001.203584
ZMW 22.626703
ZWL 321.999592
  • SCS

    0.0200

    16.14

    +0.12%

  • CMSC

    -0.1200

    23.17

    -0.52%

  • NGG

    -0.2800

    76.11

    -0.37%

  • RBGPF

    0.0000

    80.22

    0%

  • BCC

    -2.9300

    74.77

    -3.92%

  • JRI

    -0.0500

    13.38

    -0.37%

  • BCE

    -0.0100

    22.84

    -0.04%

  • CMSD

    -0.0300

    23.25

    -0.13%

  • BTI

    -0.5900

    56.45

    -1.05%

  • GSK

    0.3200

    48.61

    +0.66%

  • AZN

    0.7500

    91.36

    +0.82%

  • RIO

    0.6900

    78.32

    +0.88%

  • VOD

    0.0400

    12.84

    +0.31%

  • RELX

    0.0800

    40.73

    +0.2%

  • RYCEF

    0.2800

    15.68

    +1.79%

  • BP

    0.6300

    33.94

    +1.86%

Milky Way's black hole surrounded by strong magnetic fields: astronomers
Milky Way's black hole surrounded by strong magnetic fields: astronomers / Photo: © European Southern Observatory/AFP

Milky Way's black hole surrounded by strong magnetic fields: astronomers

Astronomers have discovered powerful magnetic fields spiralling around the black hole that sits at the centre of the Milky Way, the European Southern Observatory said Wednesday.

Text size:

A new image from the Event Horizon Telescope (EHT) for the first time showed in polarised light a ring of magnetic fields surrounding the Sagittarius A* black hole.

The fields are similar to those observed around the M87* black hole at the heart of the M87 Galaxy, which the ESO says suggests that strong magnetic fields may be common to all black holes.

"What we're seeing now is that there are strong, twisted, and organised magnetic fields near the black hole at the centre of the Milky Way galaxy," said Sara Issaoun, from Harvard's Center for Astrophysics, and co-lead of the project.

Polarised light images allow the astronomers to isolate the magnetic field lines.

Supermassive black holes, which sit at the centre of galaxies, have masses millions and even billions greater than the Sun. They are believed to have emerged very early in the universe but their creation remains a mystery.

Nothing can escape their gravitational pull, not even light, making them impossible to observe directly.

But with M87* in 2019 and Sagittarius A* in 2022, the EHT captured the halo of light that is produced by the flow of matter and gas that black holes suck in and eject.

"By imaging polarised light from hot glowing gas near black holes, we are directly inferring the structure and strength of the magnetic fields that thread the flow of gas and matter that the black hole feeds on," said Angelo Ricarte, member of the Harvard Black Hole Initiative and a co-lead of the project.

Mariafelicia De Laurentis, deputy scientist at the EHT and professor at the University of Naples Federico II in Italy, said that "since both (black holes) are pointing us toward strong magnetic fields, it suggests that this may be a universal and perhaps fundamental feature of these kinds of systems."

A.Maldonado--TFWP