The Fort Worth Press - Current carbon dioxide levels last seen 14 million years ago

USD -
AED 3.673023
AFN 65.502391
ALL 81.973818
AMD 378.010112
ANG 1.79008
AOA 916.501917
ARS 1442.268898
AUD 1.441445
AWG 1.8
AZN 1.7106
BAM 1.658807
BBD 2.01469
BDT 122.336816
BGN 1.67937
BHD 0.376976
BIF 2960
BMD 1
BND 1.274003
BOB 6.911584
BRL 5.276899
BSD 1.000305
BTN 90.399817
BWP 13.243033
BYN 2.865297
BYR 19600
BZD 2.011721
CAD 1.36982
CDF 2229.999757
CHF 0.77837
CLF 0.02195
CLP 866.710218
CNY 6.93805
CNH 6.94043
COP 3693.5
CRC 495.911928
CUC 1
CUP 26.5
CVE 93.824958
CZK 20.59675
DJF 177.719853
DKK 6.34065
DOP 63.127629
DZD 130.041372
EGP 46.863504
ERN 15
ETB 155.859732
EUR 0.849115
FJD 2.21295
FKP 0.732184
GBP 0.738785
GEL 2.689746
GGP 0.732184
GHS 10.975005
GIP 0.732184
GMD 73.498872
GNF 8759.999674
GTQ 7.672344
GYD 209.27195
HKD 7.814205
HNL 26.422344
HRK 6.394902
HTG 131.225404
HUF 322.501046
IDR 16867
ILS 3.119945
IMP 0.732184
INR 90.28935
IQD 1310.388112
IRR 42125.000158
ISK 122.949976
JEP 0.732184
JMD 156.449315
JOD 0.709016
JPY 157.060052
KES 129.000021
KGS 87.450407
KHR 4037.199913
KMF 417.000412
KPW 900.030004
KRW 1469.280139
KWD 0.307441
KYD 0.833598
KZT 493.342041
LAK 21499.694667
LBP 89579.400015
LKR 309.548446
LRD 186.059136
LSL 16.159927
LTL 2.95274
LVL 0.60489
LYD 6.336511
MAD 9.181029
MDL 16.999495
MGA 4425.634414
MKD 52.283396
MMK 2099.783213
MNT 3569.156954
MOP 8.049755
MRU 39.901106
MUR 46.039984
MVR 15.460358
MWK 1734.461935
MXN 17.47756
MYR 3.947025
MZN 63.760188
NAD 16.159927
NGN 1366.214885
NIO 36.809608
NOK 9.80194
NPR 144.639707
NZD 1.67885
OMR 0.384503
PAB 1.000314
PEN 3.362397
PGK 4.348453
PHP 58.765967
PKR 280.076588
PLN 3.587985
PYG 6605.373863
QAR 3.645678
RON 4.324401
RSD 99.685025
RUB 76.750049
RWF 1459.984648
SAR 3.750101
SBD 8.064647
SCR 13.516644
SDG 601.491373
SEK 9.06309
SGD 1.27526
SHP 0.750259
SLE 24.549792
SLL 20969.499267
SOS 570.633736
SRD 37.870156
STD 20697.981008
STN 20.779617
SVC 8.752036
SYP 11059.574895
SZL 16.152192
THB 31.801939
TJS 9.362532
TMT 3.505
TND 2.89846
TOP 2.40776
TRY 43.536797
TTD 6.773307
TWD 31.684599
TZS 2584.999806
UAH 43.163845
UGX 3570.701588
UYU 38.599199
UZS 12269.30384
VES 377.98435
VND 25955
VUV 119.687673
WST 2.726344
XAF 556.374339
XAG 0.013556
XAU 0.000208
XCD 2.70255
XCG 1.802745
XDR 0.691101
XOF 556.348385
XPF 101.150088
YER 238.32501
ZAR 16.263035
ZMK 9001.200113
ZMW 18.580528
ZWL 321.999592
  • SCS

    0.0200

    16.14

    +0.12%

  • RBGPF

    0.1000

    82.5

    +0.12%

  • RYCEF

    -0.0600

    16.62

    -0.36%

  • CMSD

    0.0200

    23.89

    +0.08%

  • CMSC

    0.0300

    23.55

    +0.13%

  • RELX

    0.3100

    30.09

    +1.03%

  • VOD

    -1.0900

    14.62

    -7.46%

  • RIO

    -5.3600

    91.12

    -5.88%

  • BCC

    -1.0700

    89.16

    -1.2%

  • GSK

    1.9400

    59.17

    +3.28%

  • BCE

    -0.7700

    25.57

    -3.01%

  • JRI

    -0.1500

    13

    -1.15%

  • NGG

    -0.9000

    86.89

    -1.04%

  • AZN

    -0.2900

    187.16

    -0.15%

  • BTI

    0.3300

    61.96

    +0.53%

  • BP

    -1.0300

    38.17

    -2.7%

Current carbon dioxide levels last seen 14 million years ago
Current carbon dioxide levels last seen 14 million years ago / Photo: © AFP

Current carbon dioxide levels last seen 14 million years ago

The last time carbon dioxide in the atmosphere consistently matched today's human-driven levels was 14 million years ago, according to a large new study Thursday that paints a grim picture of where Earth's climate is headed.

Text size:

Published in the journal Science, the paper covers the period from 66 million years ago until the present, analyzing biological and geochemical signatures from the deep past to reconstruct the historic CO2 record with greater precision than ever before.

"It really brings it home to us that what we are doing is very, very unusual in Earth's history," lead author Baerbel Hoenisch of the Columbia Climate School's Lamont-Doherty Earth Observatory told AFP.

Among other things, the new analysis finds the last time the air contained 420 parts per million (ppm) of carbon dioxide was between 14-16 million years ago, when there was no ice in Greenland and the ancestors of humans were just transitioning from forests to grasslands.

That is far further back in time than the 3-5 million years that prior analyses have indicated.

Until the late 1700s, atmospheric carbon dioxide was about 280 ppm, meaning humans have already caused an increase of about 50 percent of the greenhouse gas, which traps heat in the atmosphere and has warmed the planet by 1.2 degrees Celsius compared to before industrialization.

"What's important is that Homo, our species, has only evolved 3 million years ago," said Hoenisch.

"And so our civilization is tuned to sea level as it is today, to having warm tropics and cool poles and temperate regions that have a lot of rainfall."

If global CO2 emissions continue to rise we could reach between 600 - 800 ppm by the year 2100.

Those levels were last seen during the Eocene, 30-40 million years ago, before Antarctica was covered in ice and when the world's flora and fauna looked vastly different -- for example huge insects still roamed the Earth.

- Ancient plants -

The new study is the product of seven years of work by a consortium of 80 researchers across 16 countries and is now considered the updated consensus of the scientific community.

The team didn't collect new data -- rather, they synthesized, re-evaluated and validated published work based on updated science and categorized them according to confidence level, then combined the highest-rated into a new timeline.

Many people are familiar with the concept of drilling into ice sheets or glaciers to extract ice cores whose air bubbles reveal past atmospheric composition -- but these only go back so far, generally hundreds of thousands of years.

To look further into the past, paleoclimatologists use "proxies": by studying the chemical composition of ancient leaves, minerals and plankton, they can indirectly derive atmospheric carbon at a given point in time.

The researchers confirmed that the hottest period over the past 66 million years happened 50 million years ago, when CO2 spiked to as much as 1,600 ppm and temperatures were 12C hotter, before a long decline set in.

By 2.5 million years ago, carbon dioxide was 270-280 ppm, ushering in a series of ice ages.

That remained the level when modern humans arrived 400,000 years ago and persisted until our species began burning fossil fuels at large scales.

The team estimates that a doubling of CO2 is predicted to warm the planet by 5-8 degrees Celsius -- but over a long period, hundreds of thousands of years -- when increased temperatures have rippling effects through Earth systems.

For example, melting the polar ice caps would reduce the planet's ability to reflect solar radiation and become a reinforcing feedback loop.

But the new work remains directly relevant to policy makers, stressed Hoenisch.

The carbon record reveals that 56 million years ago, Earth underwent a similar rapid release of carbon dioxide, which caused massive changes to ecosystems and took some 150,000 years to dissipate.

"We are in this for a very long time, unless we sequester carbon dioxide, take it out of the atmosphere, and we stop our emissions sometime soon," she said.

T.Harrison--TFWP