The Fort Worth Press - Particle physics pushing cancer treatment boundaries

USD -
AED 3.672499
AFN 65.000072
ALL 81.600054
AMD 377.015652
ANG 1.79008
AOA 916.999718
ARS 1445.012302
AUD 1.424349
AWG 1.8025
AZN 1.699016
BAM 1.652954
BBD 2.006406
BDT 121.744569
BGN 1.67937
BHD 0.377037
BIF 2951.80061
BMD 1
BND 1.266301
BOB 6.883642
BRL 5.237897
BSD 0.996188
BTN 90.006001
BWP 13.760026
BYN 2.854269
BYR 19600
BZD 2.003533
CAD 1.36639
CDF 2200.000413
CHF 0.776435
CLF 0.021734
CLP 858.140033
CNY 6.938203
CNH 6.939565
COP 3629.58
CRC 494.755791
CUC 1
CUP 26.5
CVE 93.18904
CZK 20.62225
DJF 177.398771
DKK 6.322301
DOP 62.727665
DZD 129.897011
EGP 46.939934
ERN 15
ETB 154.525739
EUR 0.84665
FJD 2.200801
FKP 0.729917
GBP 0.72957
GEL 2.694949
GGP 0.729917
GHS 10.913255
GIP 0.729917
GMD 73.000151
GNF 8739.784147
GTQ 7.640884
GYD 208.410804
HKD 7.812065
HNL 26.319926
HRK 6.379101
HTG 130.669957
HUF 322.320154
IDR 16799.45
ILS 3.085695
IMP 0.729917
INR 90.446496
IQD 1305.009254
IRR 42125.000158
ISK 122.759735
JEP 0.729917
JMD 156.11768
JOD 0.709059
JPY 156.801011
KES 128.949633
KGS 87.450259
KHR 4019.573871
KMF 417.999729
KPW 899.945137
KRW 1456.804971
KWD 0.30742
KYD 0.830199
KZT 499.446421
LAK 21428.148849
LBP 89209.607762
LKR 308.347631
LRD 185.292552
LSL 15.956086
LTL 2.95274
LVL 0.60489
LYD 6.298121
MAD 9.137876
MDL 16.870209
MGA 4415.108054
MKD 52.183079
MMK 2099.936125
MNT 3569.846682
MOP 8.016683
MRU 39.768089
MUR 45.879772
MVR 15.45009
MWK 1727.419478
MXN 17.269205
MYR 3.931996
MZN 63.750101
NAD 15.956086
NGN 1379.590392
NIO 36.662976
NOK 9.64985
NPR 144.009939
NZD 1.661085
OMR 0.384488
PAB 0.996163
PEN 3.353659
PGK 4.26805
PHP 58.996032
PKR 278.611912
PLN 3.57692
PYG 6609.139544
QAR 3.622342
RON 4.313702
RSD 99.398038
RUB 76.703228
RWF 1453.926184
SAR 3.750116
SBD 8.058101
SCR 13.590449
SDG 601.49594
SEK 8.95008
SGD 1.27203
SHP 0.750259
SLE 24.474981
SLL 20969.499267
SOS 568.369098
SRD 38.114502
STD 20697.981008
STN 20.706383
SVC 8.716965
SYP 11059.574895
SZL 15.961664
THB 31.611496
TJS 9.309427
TMT 3.51
TND 2.88065
TOP 2.40776
TRY 43.504989
TTD 6.747746
TWD 31.581499
TZS 2586.540272
UAH 43.111874
UGX 3551.266015
UYU 38.369223
UZS 12195.585756
VES 371.640565
VND 25982
VUV 119.556789
WST 2.72617
XAF 554.38764
XAG 0.011125
XAU 0.000198
XCD 2.70255
XCG 1.79537
XDR 0.68948
XOF 554.38764
XPF 100.793178
YER 238.374999
ZAR 15.97505
ZMK 9001.202765
ZMW 19.550207
ZWL 321.999592
  • SCS

    0.0200

    16.14

    +0.12%

  • RBGPF

    -2.1000

    82.1

    -2.56%

  • CMSC

    -0.0900

    23.66

    -0.38%

  • NGG

    1.6200

    86.23

    +1.88%

  • RYCEF

    0.2600

    16.93

    +1.54%

  • RIO

    3.8500

    96.37

    +4%

  • CMSD

    -0.1400

    23.94

    -0.58%

  • GSK

    0.8700

    53.34

    +1.63%

  • AZN

    -4.0900

    184.32

    -2.22%

  • BCC

    3.1800

    84.93

    +3.74%

  • BCE

    0.2700

    26.1

    +1.03%

  • BTI

    0.8800

    61.87

    +1.42%

  • VOD

    0.3400

    15.25

    +2.23%

  • RELX

    -5.0200

    30.51

    -16.45%

  • JRI

    -0.0300

    13.12

    -0.23%

  • BP

    1.1200

    38.82

    +2.89%

Particle physics pushing cancer treatment boundaries
Particle physics pushing cancer treatment boundaries / Photo: © AFP

Particle physics pushing cancer treatment boundaries

Researchers at Europe's science lab CERN, who regularly use particle physics to challenge our understanding of the universe, are also applying their craft to upend the limits to cancer treatment.

Text size:

The physicists here are working with giant particle accelerators in search of ways to expand the reach of cancer radiation therapy, and take on hard-to-reach tumours that would otherwise have been fatal.

In one CERN lab, called CLEAR, facility coordinator Roberto Corsini stands next to a large, linear particle accelerator consisting of a 40-metre metal beam with tubes packed in aluminium foil at one end, and a vast array of measurement instruments and protruding colourful wires and cables.

The research here, he told AFP during a recent visit, is aimed at creating very high energy beams of electrons -- the negatively charged particles in the nucleus of an atom -- that eventually could help to combat cancerous cells more effectively.

They are researching a "technology to accelerate electrons to the energies that are needed to treat deep-seated tumours, which is above 100 million electron volts" (MeV), Corsini explained.

The idea is to use these very high energy electrons (VHEE) in combination with a new and promising treatment method called FLASH.

- Reducing 'collateral damage' -

This method entails delivering the radiation dose in a few hundred milliseconds, instead of minutes as is the current approach.

This has been shown to have the same destructive effect on the targeted tumour, but causes far less damage to the surrounding healthy tissue.

With traditional radiation therapy, "you do create some collateral damage," said Benjamin Fisch, a CERN knowledge transfer officer.

The effect of the brief but intense FLASH treatment, he told reporters, is to "reduce the toxicity to healthy tissue while still properly damaging cancer cells."

FLASH was first used on patients in 2018, based on currently available medical linear accelerators, linacs, that provide low-energy electron beams of around 6-10 MeV.

At such low energy though, the beams cannot penetrate deeply, meaning the highly-effective treatment has so far only been used on superficial tumours, found with skin cancer.

But the CERN physicists are now collaborating with the Lausanne University Hospital (CHUV) to build a machine for FLASH delivery that can accelerate electrons to 100 to 200 MeV, making it possible to use the method for much more hard-to-reach tumours.

- 'Game-changer' -

Deep-lying cancer tumours that can't be rooted out using surgery, chemotherapy or traditional radiation therapy are often today considered a death sentence.

"It is the ones which we don't cure at the moment which will be the targets," Professor Jean Bourhis, head of CHUV's radiology department, told AFP.

"For those particular cancers, which may be one third of the cancer cases, it could be a game-changer."

There are particular hopes that the FLASH method, with its far less harmful impact on surrounding tissue, could make it possible to go after tumours lodged in the brain or near other vital organs.

Bourhis said it might not relegate deaths from stubborn cancer tumours to the history books, "but at least there will be a new opportunity for more cures, if it works."

- 'Compact' -

One challenge is making the powerful accelerator compact enough to fit inside a hospital.

At CERN, a large gallery has been dedicated to housing the CLEAR accelerator, which requires 20 metres to push the electrons up to the required energy level -- and another 20 metres to condition, measure and deliver the beam.

But Corsini insisted that CERN had the know-how to "accelerate in a much more compact space".

The prototype being designed with CHUV will aim to do the same job with a machine that is 10 metres overall.

This "compact" solution, Corsini said, "reduces the cost, reduces power consumption and variability, and you can easily put it into a hospital without having to build a whole building."

Construction of the prototype is scheduled to begin next February, and patient clinical trials could begin in 2025, Bourhis said, "if everything goes smoothly".

S.Palmer--TFWP