The Fort Worth Press - Brain stimulation can help injured people walk: study

USD -
AED 3.672504
AFN 65.503991
ALL 81.893517
AMD 377.703986
ANG 1.79008
AOA 917.000367
ARS 1431.463704
AUD 1.424075
AWG 1.8
AZN 1.70397
BAM 1.658906
BBD 2.014216
BDT 122.30167
BGN 1.67937
BHD 0.377004
BIF 2963.603824
BMD 1
BND 1.273484
BOB 6.910269
BRL 5.23885
BSD 1.000025
BTN 90.583306
BWP 13.239523
BYN 2.873016
BYR 19600
BZD 2.011247
CAD 1.36432
CDF 2230.000362
CHF 0.775404
CLF 0.021785
CLP 860.180396
CNY 6.93805
CNH 6.93014
COP 3691.11
CRC 495.76963
CUC 1
CUP 26.5
CVE 93.526553
CZK 20.49104
DJF 177.720393
DKK 6.318604
DOP 63.114413
DZD 129.915817
EGP 46.860804
ERN 15
ETB 155.46494
EUR 0.84612
FJD 2.209504
FKP 0.738005
GBP 0.734505
GEL 2.69504
GGP 0.738005
GHS 10.990102
GIP 0.738005
GMD 73.000355
GNF 8778.001137
GTQ 7.670255
GYD 209.225001
HKD 7.81355
HNL 26.416279
HRK 6.375104
HTG 131.004182
HUF 319.673504
IDR 16847.65
ILS 3.110675
IMP 0.738005
INR 90.60355
IQD 1310.041816
IRR 42125.000158
ISK 122.690386
JEP 0.738005
JMD 156.517978
JOD 0.70904
JPY 157.06304
KES 129.004623
KGS 87.450384
KHR 4035.7261
KMF 419.00035
KPW 900.002243
KRW 1462.730383
KWD 0.30717
KYD 0.833355
KZT 494.785725
LAK 21489.944613
LBP 89557.410282
LKR 309.387392
LRD 188.003087
LSL 16.133574
LTL 2.95274
LVL 0.60489
LYD 6.332646
MAD 9.180641
MDL 17.050476
MGA 4439.468349
MKD 52.169828
MMK 2100.00747
MNT 3580.70414
MOP 8.047618
MRU 39.542143
MUR 46.060378
MVR 15.450378
MWK 1734.055998
MXN 17.260975
MYR 3.947504
MZN 63.750377
NAD 16.133574
NGN 1367.390377
NIO 36.803155
NOK 9.658735
NPR 144.932675
NZD 1.659792
OMR 0.384466
PAB 1.000025
PEN 3.364787
PGK 4.288489
PHP 58.458038
PKR 279.633919
PLN 3.568365
PYG 6607.462446
QAR 3.645108
RON 4.308404
RSD 99.305038
RUB 77.002259
RWF 1459.579124
SAR 3.750159
SBD 8.058149
SCR 13.731545
SDG 601.503676
SEK 9.004245
SGD 1.271104
SHP 0.750259
SLE 24.450371
SLL 20969.499267
SOS 570.497977
SRD 37.818038
STD 20697.981008
STN 20.780851
SVC 8.750011
SYP 11059.574895
SZL 16.130113
THB 31.539504
TJS 9.370298
TMT 3.505
TND 2.900328
TOP 2.40776
TRY 43.592904
TTD 6.771984
TWD 31.613038
TZS 2575.000335
UAH 42.955257
UGX 3558.190624
UYU 38.652875
UZS 12280.366935
VES 377.985125
VND 25950
VUV 119.988021
WST 2.726314
XAF 556.381418
XAG 0.012857
XAU 0.000201
XCD 2.70255
XCG 1.802328
XDR 0.692248
XOF 556.381418
XPF 101.156094
YER 238.403589
ZAR 16.024104
ZMK 9001.203584
ZMW 18.62558
ZWL 321.999592
  • SCS

    0.0200

    16.14

    +0.12%

  • RIO

    2.2800

    93.4

    +2.44%

  • BCC

    2.5200

    91.68

    +2.75%

  • CMSC

    0.0050

    23.555

    +0.02%

  • BCE

    -0.2570

    25.313

    -1.02%

  • CMSD

    0.0580

    23.948

    +0.24%

  • JRI

    0.0600

    12.94

    +0.46%

  • NGG

    0.9500

    87.84

    +1.08%

  • RBGPF

    0.1000

    82.5

    +0.12%

  • GSK

    1.0100

    60.18

    +1.68%

  • BTI

    0.7550

    62.715

    +1.2%

  • BP

    0.8550

    39.025

    +2.19%

  • RYCEF

    0.0500

    16.67

    +0.3%

  • AZN

    5.5950

    192.755

    +2.9%

  • RELX

    -0.7050

    29.385

    -2.4%

  • VOD

    0.4550

    15.075

    +3.02%

Brain stimulation can help injured people walk: study
Brain stimulation can help injured people walk: study / Photo: © AFP/File

Brain stimulation can help injured people walk: study

Scientists said Monday that electrically stimulating a particular region in the brain could help people with injured spinal cords walk more easily, with one patient describing how the technique allowed him to conquer his fear of stairs.

Text size:

The new technique is intended for people with spinal cord injuries where the connection between their brain and spinal cord has not been totally severed, and who still have some movement in their legs.

Wolfgang Jaeger, one of two patients who took part in an early trial, said that it immediately made a "big difference" to his mobility.

"Now when I see a staircase with just a few steps, I know I can handle it on my own," the 54-year-old said in a video released alongside a new study in the journal Nature Medicine.

The research was conducted by a Swiss team that has pioneered several recent advances, including using electrical stimulation of the spinal cord to let several paralysed patients walk again.

This time around, the researchers wanted to figure out which region of the brain was most responsible for people recovering from spinal cord injuries.

- 'I feel the urge to walk' -

Using 3D imaging techniques to map out the brain activity of mice with these injuries, the team created what they called a "brain-wide atlas".

They were surprised to find that the brain region they were looking for was in the lateral hypothalamus, which is otherwise known as a regulator for arousal, feeding and motivation.

A particular group of neurons in this region "appears to be involved in the recovery of walking after spinal cord injury," neuroscientist Gregoire Courtine at Switzerland's Ecole Polytechnique Federale de Lausanne told AFP.

Next, the team sought to amplify the signal from these neurons using a procedure called deep brain stimulation, which is commonly used to treat movement problems in people with Parkinson's disease.

It involves a surgeon implanting electrodes in the brain region, which are connected to a device implanted in the patient's chest. When switched on, the device sends electrical pulses up to the brain.

First, the team tested their theory on rats and mice, finding that it "immediately" improved walking, the study said.

The first human participant of the 2022 Swiss trial was a woman who, like Jaeger, has an incomplete spinal cord injury.

Neurosurgeon Jocelyne Bloch told AFP that when the women's device was turned on for the first time, she said: "I feel my legs."

When they turned up the electrical current, the women said, "I feel the urge to walk," according to Bloch.

The patients could turn on their device whenever they needed, and also went through months of rehab and strength training.

The woman's goal was to walk independently without a walker, while Jaeger's was to climb stairs by himself.

"Both of them reached their goal," Bloch said.

- 'No problem' -

Jaeger, who is from the Swiss municipality of Kappel, spoke about facing eight steps down to the sea during a holiday last year.

With the device turned on, "walking up and down the stairs was no problem," he said.

"It's a great feeling when you don't have to rely on others all the time."

Over time, he "became faster and could walk longer" even when the device was switched off, he added.

More research is still needed -- and this technique will not be effective for all patients, Courtine emphasised.

Because it depends on boosting the brain's signal to the spinal cord, it depends how much signal was getting through in the first place.

And while deep brain stimulation is now fairly common, some people are not so "comfortable with someone operating on their brain," Courtine added.

The researchers believe that in the future, the best option for recovering from these kinds of injuries could be stimulating both their spinal cord and lateral hypothalamus.

D.Johnson--TFWP