The Fort Worth Press - Drew Weissman, Nobel-winning mRNA pioneer

USD -
AED 3.672504
AFN 66.265317
ALL 82.40468
AMD 381.537936
ANG 1.790403
AOA 917.000367
ARS 1449.250402
AUD 1.508523
AWG 1.8025
AZN 1.70397
BAM 1.670125
BBD 2.014261
BDT 122.309039
BGN 1.670704
BHD 0.377951
BIF 2957.004398
BMD 1
BND 1.292857
BOB 6.910892
BRL 5.541304
BSD 1.000043
BTN 89.607617
BWP 14.066863
BYN 2.939243
BYR 19600
BZD 2.011357
CAD 1.37965
CDF 2558.50392
CHF 0.79556
CLF 0.023213
CLP 910.640396
CNY 7.04095
CNH 7.033604
COP 3808
CRC 499.466291
CUC 1
CUP 26.5
CVE 94.159088
CZK 20.779904
DJF 178.088041
DKK 6.380104
DOP 62.644635
DZD 130.069596
EGP 47.704197
ERN 15
ETB 155.362794
EUR 0.853804
FJD 2.283704
FKP 0.747615
GBP 0.747496
GEL 2.68504
GGP 0.747615
GHS 11.486273
GIP 0.747615
GMD 73.000355
GNF 8741.72751
GTQ 7.663208
GYD 209.231032
HKD 7.78155
HNL 26.346441
HRK 6.434404
HTG 131.121643
HUF 330.190388
IDR 16697
ILS 3.20705
IMP 0.747615
INR 89.57735
IQD 1310.106315
IRR 42100.000352
ISK 125.630386
JEP 0.747615
JMD 160.018787
JOD 0.70904
JPY 157.75804
KES 128.909953
KGS 87.450384
KHR 4013.492165
KMF 420.00035
KPW 900.011689
KRW 1475.760383
KWD 0.30723
KYD 0.83344
KZT 517.535545
LAK 21660.048674
LBP 89556.722599
LKR 309.636651
LRD 177.012083
LSL 16.776824
LTL 2.95274
LVL 0.60489
LYD 5.420776
MAD 9.166901
MDL 16.930959
MGA 4548.055164
MKD 52.559669
MMK 2100.050486
MNT 3553.222489
MOP 8.015542
MRU 40.023056
MUR 46.150378
MVR 15.450378
MWK 1734.170189
MXN 18.033704
MYR 4.077039
MZN 63.903729
NAD 16.776824
NGN 1460.160377
NIO 36.804577
NOK 10.138704
NPR 143.372187
NZD 1.737016
OMR 0.385423
PAB 1.000043
PEN 3.367832
PGK 4.254302
PHP 58.571038
PKR 280.195978
PLN 3.59225
PYG 6709.363392
QAR 3.641038
RON 4.335404
RSD 100.004038
RUB 80.695957
RWF 1456.129115
SAR 3.750651
SBD 8.146749
SCR 15.161607
SDG 601.503676
SEK 9.268304
SGD 1.293304
SHP 0.750259
SLE 24.050371
SLL 20969.503664
SOS 570.513642
SRD 38.441504
STD 20697.981008
STN 20.921395
SVC 8.750267
SYP 11058.582789
SZL 16.774689
THB 31.425038
TJS 9.215661
TMT 3.5
TND 2.927287
TOP 2.40776
TRY 42.746504
TTD 6.787925
TWD 31.518904
TZS 2495.196618
UAH 42.285385
UGX 3577.131634
UYU 39.263908
UZS 12022.543871
VES 282.15965
VND 26312.5
VUV 120.938943
WST 2.787822
XAF 560.144315
XAG 0.014889
XAU 0.000231
XCD 2.70255
XCG 1.8024
XDR 0.69664
XOF 560.144315
XPF 101.840229
YER 238.403589
ZAR 16.77901
ZMK 9001.203584
ZMW 22.626703
ZWL 321.999592
  • SCS

    0.0200

    16.14

    +0.12%

  • RBGPF

    0.0000

    80.22

    0%

  • CMSC

    -0.1200

    23.17

    -0.52%

  • CMSD

    -0.0300

    23.25

    -0.13%

  • RELX

    0.0800

    40.73

    +0.2%

  • AZN

    0.7500

    91.36

    +0.82%

  • NGG

    -0.2800

    76.11

    -0.37%

  • GSK

    0.3200

    48.61

    +0.66%

  • BCE

    -0.0100

    22.84

    -0.04%

  • RIO

    0.6900

    78.32

    +0.88%

  • BCC

    -2.9300

    74.77

    -3.92%

  • JRI

    -0.0500

    13.38

    -0.37%

  • VOD

    0.0400

    12.84

    +0.31%

  • BTI

    -0.5900

    56.45

    -1.05%

  • RYCEF

    0.2800

    15.68

    +1.79%

  • BP

    0.6300

    33.94

    +1.86%

Drew Weissman, Nobel-winning mRNA pioneer
Drew Weissman, Nobel-winning mRNA pioneer / Photo: © AFP

Drew Weissman, Nobel-winning mRNA pioneer

Drew Weissman's decades of research into mRNA technology paved the way for Covid-19 vaccines, finally earning a Nobel prize for the physician-scientist.

Text size:

The 64-year-old University of Pennsylvania immunologist, who won the Nobel Medicine Prize along with long-time collaborator Katalin Kariko on Monday, is far from done.

His next quests include, among others, developing a vaccine against all future coronaviruses.

"There have been three (coronavirus) pandemics or epidemics in the past 20 years," Weissman told AFP recently, referring to the original SARS virus, MERS and Covid-19.

"You have to assume there's going to be more, and our idea was that we could wait for the next coronavirus epidemic or pandemic, and then spend a year and a half making a vaccine. Or we could make one now."

- Twin breakthroughs-

The world is now aware of the elegance of the mRNA (messenger ribonucleic acid) vaccines, that deliver genetic instructions to cells telling them to recreate the spike protein of the coronavirus, in order to trigger effective antibodies when they encounter the real thing.

But back when Weissman teamed up with Kariko in the 1990s, the research was considered a scientific dead-end, and working with DNA was considered a more promising avenue.

"We started working together in 1998, and that was without much funding and without much in the way of publications," he said.

In 2005, the pair found a way to alter synthetic RNA to stop it from causing a massive inflammatory response found in animal experiments.

"Just before our paper was published, I said 'Our phones are going to ring off the hook,'" he recalls.

"We sat there staring at our phones for five years, and they never rang!"

With a second big breakthrough in 2015, they found a new way to deliver the particles safely and effectively to their target cells, using a fatty coating called "lipid nanoparticles."

Both developments are part of the Pfizer and Moderna Covid-19 vaccines today.

- Helping people -

Weissman grew up in Lexington, Massachusetts.

His father and mother, both since retired, were an engineer and dental hygienist, respectively.

"When I was five years old, I was diagnosed as a type-one diabetic, and back then it was testing urine and taking insulin shots a few times a day," he recalled, and this motivated him to pursue science.

He was educated at Brandeis University and completed an MD-Phd program in immunology at Boston University.

As a young fellow at the National Institutes of Health, he worked for several years in Anthony Fauci's lab on HIV research, before finally arriving at his long-time home Penn.

Weissman was a practicing doctor until a few years ago, and says it brings him great joy that his invention has helped save millions of lives.

"I'm a clinician scientist, my dream since starting college and medical school was to make something that helps people. I think I can say that I've done that. So I am incredibly happy," he said.

Beyond vaccines, mRNA technology is also being heralded for its potential across medicine.

Weissman's team is working on using RNA to develop a single-injection gene therapy to overcome the defect that causes sickle cell anemia, a genetic blood disease that 200,000 babies are born with in Africa every year.

Significant technical challenges remain to ensure the treatment is able to correctly edit genes and is safe, but the researchers are hopeful.

Bone marrow transplant, an expensive treatment with serious risks, is currently the only cure.

M.T.Smith--TFWP